II Semester B.A./B.Sc. Examination, May/June 2018

 (CBCS) ($\mathrm{F}+\mathrm{R}$) (2014-15 and Onwards)MATHEMATICS (Paper-II)

Max. Marks : 70
Instruction : Answer all Parts.
PART - A

Ansmer any five questions :
al On the set Q, the set of all rational numbers other than 1, * is defined by $a * b=a+b-a b \forall a, b \in Q$. Find the identity element.
7) Prove that in a group $\mathrm{G},\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a} \forall \mathrm{a} \in \mathrm{G}$.
$=$ Find the angle between the radius vector and the tangent to the curve $r=a e$
4) Find the length of the polar subtangent for the curve $r=a \sec 2 \theta$.
al Find the asymptotes parallel to the coordinate axes for $\left(x^{2}+a^{2}\right) y=b x^{2}$.
\# Find the length of an arc of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$.
I Show that the equation $\left(x^{2}-2 x y+3 y^{2}\right) d x+\left(y^{2}+6 x y-x^{2}\right) d y=0$ is exact.
7) Solve : $P^{2}-4 P+3=0$ where $P=\frac{d y}{d x}$.
PART - B

Ahswer one full question:
2 at tet G be the set of all rational numbers and $*$ be the binary operation on G defined $b y \mathrm{a}=\mathrm{b}=\frac{\mathrm{ab}}{7} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$ then prove that $(\mathrm{G}, *)$ is an abelian group. Solve $4=x=3^{-1}$.
a) Prove that $\mathrm{G}=\{1,5,7,11\}$ is a group under multiplication modulo 12.
d) Prove that a non-empty subset H of a group $(\mathrm{G}, *)$ is a subgroup of G , if and only if
i) $a * b \in H, \forall a, b \in H$

i) $a^{-1} \in H, \forall a \in H$.

OR
P.T.O.
3. a) Prove that every group of order 4 is abelian.
b) Prove that $\mathrm{G}=\left\{2^{n} / n \in Z\right\}$ is a group under multiplication.
c) Prove that $H=\{1,2,4\}$ is a subgroup of the group $G=\{1,2,3,4,5,6\}$ under multiplication modulo 7 .
PART - C

Answer any two full questions :

4. a) With usual notations, prove that $\tan \phi=r \frac{d \theta}{d r}$ for the polar curve, $r=f(\theta)$.
b) Show that the curves $r=a(1+\cos \theta), r=b(1-\cos \theta)$ intersect orthogonally.
c) Show that the evaluate of the parabola $y^{2}=4 a x$ is $27 a y^{2}=4(x-2 a)^{3}$.
OR
5. a) Find the angle of intersection of the curves $r=\sin \theta+\cos \theta$ and $r=2 \sin \theta$.
b) Derive the formula for radius of curvature in parametric form.
c) Find the pedal equation of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
6. a) Find all the asymptotes of the curve

$$
2 x^{3}-x^{2} y-2 x y^{2}+y^{3}-4 x^{2}+8 x y-4 x+1=0
$$

b) Find the surface area of the solid generated by revolving about the y-axis the curve $x=y^{3}$ from $y=0$ to $y=2$.
c) Find the position and nature of the double points of the curve

$$
x^{3}-y^{2}+4 y-7 x^{2}+15 x-13=0
$$

OR
7. a) Find the entire length of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
b) Find the envelope of $x \cos ^{3} \theta+y \sin ^{3} \theta=c$, where θ is the parameter.
c) Find the volume of the solid obtained by revolving the cardioid $r=a(1+\cos \theta)$ about the initial line.

PART - D

Answer any one full question :
($1 \times 15=15$)
8. a) Solve : $x \frac{d y}{d x}+(1-x) y=x^{2} y^{2}$.
b) Solve : $x=y P+P^{2}$.
c) Verify for exactness and solve :

$$
(4 x+3 y+1) d x+(3 x+2 y+1) d y=0
$$

OR
9. a) Solve : $x \frac{d y}{d x}+y \log y=x y e^{x}$.
b) Find the general and singular solution of $y=3 p x+6 y^{2} p^{2}$. (Hint-put $y^{3}=v$).
c) Show that the family of curves $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$ is self orthogonal, λ is a parameter.

