

(CBCS) (Fresh + Repeaters) (2015 – 16 and Onwards) (Semester Scheme) MATHEMATICS (Paper – IV)

Time: 3 Hours

07: syraM. xsMd prove Fundamental theorem of Homomorphism.

Answer two full questions.

Instruction : Answer all Parts.

 $(D^2 - 5D + 6) y = e^{4x} + \sin PART - A$

1. Answer any five questions.

(01=2×2) 4. a) Find the Fourier expansion of $f(x) = x - x^2$

- a) Define a normal subgroup.
- b) If $f: G \to G'$ is a homomorphism then prove that f(e) = e', where e and e' are the identity elements of G and G' respectively.
 - c) Expand f(x) = x in half range cosine series over the interval $(0, \pi)$.
 - d) Show that $f(x, y) = x^3 + y^3 3xy + 1$ is minimum at (1, 1).
 - e) If L[f(t)] = F(s), then show that $L[e^{at} f(t)] = F(s a)$.
 - f) Find L[t sint]. $d\pi \le x \ge \pi , x \pi$
 - g) Solve: $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$.) Find the extreme values of the transfer of parameters.
 - h) Prove that 'x' is a part of the complementary function of

$$x^2 \frac{d^2y}{dx^2} - 2x(x+1)\frac{dy}{dx} + 2(x+1)y = x^3$$
.

b) Find L[f(t)] if $f(t) = \begin{cases} 2t, & 0 \le t \text{ if } 5 \text{ TRAP} \\ 1, & t > 5 \end{cases}$

Answer one full question.

 $(1 \times 15 = 15)$

- 2. a) Prove that a subgroup H of a group G is normal subgroup of G iff \circ gnizU (\circ g H g⁻¹ = H, \forall g \in G.
 - b) Define centre of a group and prove that the centre of a group G is a normal subgroup of G.
 - c) If $f: G \to G'$ be a homorphism from the group G into G' with Kernal K, then prove that f is one-one iff $K = \{e\}$, where 'e' is the identity element in G.

OR

P.T.O.

- 3. a) Prove that the intersection of two normal subgroups of a group is a normal (CBCS) (Fresh + Repeaters) (2015 - 16 and Onw. quorpdus
 - b) If G is a group and H is a subgroup of index 2 in G, then show that H is a normal subgroup of G.
 - c) State and prove Fundamental theorem of Homomorphism.

Instruction: Answer all Pars TRAP

Answer two full questions.

(2×15=30)

- 4. a) Find the Fourier expansion of $f(x) = x x^2$ in (-1, 1).
 - b) Obtain half range sine series of $f(x) = \sin x$, $0 < x < \pi$.
 - c) Expand $x^2y + 3y 2$ in powers of (x 1) and (y + 2) by Taylor series upto c) Expand f(x) = x in half range cosine series over the i. Remark earlier f(x) = x in half range cosine series over the i. Remark earlier f(x) = x in half range cosine series over the interest f(x) = x in half range f(x) = x in half ra

d) Show that $f(x, y) = x^3 + y^3 - 3xy + 1$ is minimum at (1,90)

- 5. a) Find the Fourier series of $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ \pi x, & \pi \le x \le 2\pi \end{cases}$
 - b) Find the extreme values of the function $f(x) = x^3y^2 (1 x y)$.
 - c) Show that minimum value of $x^2 + y^2 + z^2$ subjected to the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ $x^{2} \frac{d^{2}y}{dx^{2}} = 2x(x+1)\frac{dy}{dx} + 2(x+1)y = x^{3}$ is 27.
- 6. a) Find L[e^t sin²t] and L[sinh² at].
 - b) Find L[f(t)] if $f(t) =\begin{cases} 2t, & 0 \le t \le 5 \text{ TRA9} \\ 1, & t > 5 \end{cases}$
 - c) Using Convolution theorem find $L^{-1}\left[\frac{1}{(s+2)(s+4)}\right]$ on oduces and every (s. S.

b) Define centre of a group and prove that the centre of AO oup G is a normal

- c) If $f: G \to G'$ be a homorphism from the group G into G' with Kernal K. then prove that f is one-one iff $K = \{e\}$, where 'e' is the identity el.[ff-9ft] L (iG.
 - ii) $L[e^{-t}(2\cos 5t 3\sin 5t)]$.

b) Find
$$L^{-1} \left[\frac{s^2}{(s-1)(s^2+1)} \right]$$
.

c) Find L[f² u (t - 3)] using convolution property.

PART - D

Answer one full question.

 $(1 \times 15 = 15)$

- 8. a) Solve: $(D^2 5D + 6) y = e^{4x} + \sin 2x$.
 - b) Solve: $4x^2y'' + 4xy' y = 4x^2$.
 - c) Solve: xy'' (1 + x)y' + y = 0, given that (x + 1) is a part of complementary function.

OR in half range cosine series of

9. a) Solve:
$$\frac{d^2y}{dx^2} + y = e^{-x} + 5x^2e^x$$
.

b) Solve:
$$\frac{dx}{dt} = 3x - y$$
; $\frac{dy}{dt} = x + y$.

c) Solve: $y'' + y = \tan x$ by the method of variation of parameters.

 $2x(x+1)\frac{dy}{dy} + 2(x+1)y = x^3$