IV Semester B.A./B.Sc. Examination, May/June 2018 (CBCS) (Fresh + Repeaters) (2015-16 and Onwards)
 (Semester Scheme)
 MATHEMATICS (Paper - IV)

Time: 3 Hours

Max. Marks : 70
Instruction : Answer all Parts.

> PART - A

1. Answer any five questions.
a) Define a normal subgroup.
b) If $f: G \rightarrow G^{\prime}$ is a homomorphism then prove that $f(e)=e^{\prime}$, where e and e^{\prime} are the identity elements of G and G^{\prime} respectively.
c) Expand $f(x)=x$ in half range cosine series over the interval $(0, \pi)$.
d) Show that $f(x, y)=x^{3}+y^{3}-3 x y+1$ is minimum at $(1,1)$.
e) If $L[f(t)]=F(s)$, then show that $L\left[e^{a t} f(t)\right]=F(s-a)$.
f) Find $\mathrm{L}[t$ sint $]$.
g) Solve : $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$.
h) Prove that ' x ' is a part of the complementary function of

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x(x+1) \frac{d y}{d x}+2(x+1) y=x^{3}
$$

PART - B

Answer one full question.
($1 \times 15=15$)
2. a) Prove that a subgroup H of a group G is normal subgroup of G iff $\mathrm{gH} \mathrm{g}{ }^{-1}=\mathrm{H}, \forall \mathrm{g} \in \mathrm{G}$.
b) Define centre of a group and prove that the centre of a group G is a normal subgroup of G.
c) If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a homorphism from the group G into G^{\prime} with Kernal K , then prove that f is one-one iff $K=\{e\}$, where ' e ' is the identity element in G.

OR
P.T.O.
3. a) Prove that the intersection of two normal subgroups of a group is a normal subgroup.
b) If G is a group and H is a subgroup of index 2 in G , then show that H is a normal subgroup of G .
c) State and prove Fundamental theorem of Homomorphism.
PART-C

Answer two full questions.
4. a) Find the Fourier expansion of $f(x)=x-x^{2}$ in $(-1,1)$.
b) Obtain half range sine series of $f(x)=\sin x, 0<x<\pi$.
c) Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ by Taylor series upto $3^{\text {rd }}$ degree terms.

OR
5. a) Find the Fourier series of $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x \leq \pi \\ \pi-x, & \pi \leq x \leq 2 \pi\end{array}\right.$.
b) Find the extreme values of the function $f(x)=x^{3} y^{2}(1-x-y)$.
c) Show that minimum value of $x^{2}+y^{2}+z^{2}$ subjected to the condition $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$ is 27 .
6. a) Find $L\left[e^{t} \sin ^{2 t}\right]$ and $L\left[\sinh ^{2} a t\right]$.
b) Find $L[f(t)]$ if $f(t)=\left\{\begin{array}{cl}2 t, & 0 \leq t \leq 5 \\ 1, & t>5\end{array}\right.$.
c) Using Convolution theorem find $L^{-1}\left[\frac{1}{(s+2)(s+4)}\right]$.

OR
7. a) Find:
i) $L\left[t^{3} e^{-3}\right]$.
ii) $L\left[e^{-t}(2 \cos 5 t-3 \sin 5 t)\right]$.
b）Find $L^{-1}\left[\frac{s^{2}}{(s-1)\left(s^{2}+1\right)}\right]$ ．
c）Find $L\left[t^{2} u(t-3)\right]$ using convolution property．
PART - D

Answer one full question．

8．a）Solve：$\left(D^{2}-5 D+6\right) y=e^{4 x}+\sin 2 x$ ．
b）Solve ： $4 x^{2} y^{\prime \prime}+4 x y^{\prime}-y=4 x^{2}$ ．
c）Solve ：$x y^{\prime \prime}-(1+x) y^{\prime}+y=0$ ，given that $(x+1)$ is a part of complementary function．

OR
9．a）Solve ：$\frac{d^{2} y}{d x^{2}}+y=e^{-x}+5 x^{2} e^{x}$ ．
b）Solve：$\frac{d x}{d t}=3 x-y$ ；$\frac{d y}{d t}=x+y$ ．
c）Solve ：$y^{\prime \prime}+y=\tan x$ by the method of variation of parameters．

